Uncountably many non-commensurable finitely presented pro-p groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finitely Presented Residually Free Groups

We establish a general criterion for the finite presentability of subdirect products of groups and use this to characterize finitely presented residually free groups. We prove that, for all n ∈ N, a residually free group is of type FPn if and only if it is of type Fn. New families of subdirect products of free groups are constructed, including the first examples of finitely presented subgroups ...

متن کامل

On solubility of groups with finitely many centralizers

For any group G, let C(G) denote the set of centralizers of G.We say that a group G has n centralizers (G is a Cn-group) if |C(G)| = n.In this note, we prove that every finite Cn-group with n ≤ 21 is soluble andthis estimate is sharp. Moreover, we prove that every finite Cn-group with|G| < 30n+1519 is non-nilpotent soluble. This result gives a partial answer to aconjecture raised by A. Ashrafi in ...

متن کامل

On the verbal width of finitely generated pro-p groups

Let p be a prime. It is proved that a non-trivial word w from a free group F has finite width in every finitely generated pro-p group if and only if w 6∈ (F ′)pF ′′. Also it is shown that any word w has finite width in a compact p-adic group.

متن کامل

Non-amenable finitely presented torsion-by-cyclic groups

We construct a finitely presented non-amenable group without free non-cyclic subgroups thus providing a finitely presented counterexample to von Neumann’s problem. Our group is an extension of a group of finite exponent n >> 1 by a cyclic group, so it satisfies the identity [x, y] = 1.

متن کامل

Non-amenable Finitely Presented Torsion-by-cyclic Groups

We construct a finitely presented non-amenable group without free non-cyclic subgroups thus providing a finitely presented counterexample to von Neumann’s problem. Our group is an extension of a group of finite exponent n 1 by a cyclic group, so it satisfies the identity [x, y]n = 1. 1. Short history of the problem Hausdorff [14] proved in 1914 that one can subdivide the 2-sphere minus a counta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Group Theory

سال: 2016

ISSN: 1433-5883,1435-4446

DOI: 10.1515/jgth-2016-0510